Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 302: 122326, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716282

RESUMO

We developed a nanoparticle base layer technology capable of maintaining the bioactivity of protein-based neural probe coating intended to improve neural recording quality. When covalently bound on thiolated nanoparticle (TNP) modified surfaces, neural adhesion molecule L1 maintained bioactivity throughout 8 weeks of dry storage at room temperature, while those bound to unmodified surfaces lost 66% bioactivity within 3 days. We tested the TNP + L1 coating in mouse brains on two different neural electrode arrays after two different dry storage durations (3 and 28 days). The results show that dry-stored coating is as good as the freshly prepared, and even after 28 days of storage, the number of single units per channel and signal-to-noise ratio of the TNP + L1 coated arrays were significantly higher by 32% and 40% respectively than uncoated controls over 16 weeks. This nanoparticle base layer approach enables the dissemination of biomolecule-functionalized neural probes to users worldwide and may also benefit a broad range of applications that rely on surface-bound biomolecules.


Assuntos
Biomimética , Sistema Nervoso , Camundongos , Animais , Proteínas , Materiais Revestidos Biocompatíveis
2.
Acta Biomater ; 149: 273-286, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35764240

RESUMO

Microelectrode arrays for neural recording suffer from low yield and stability partly due to the inflammatory host responses. A neuronal cell adhesion molecule L1 coating has been shown to promote electrode-neuron integration, reduce microglia activation and improve recording. Coupling L1 to surface via a nanoparticle (NP) base layer further increased the protein surface density and stability. However, the exact L1-microglia interaction in these coatings has not been studied. Here we cultured primary microglia on L1 modified surfaces (with and without NP) and characterized microglia activation upon phorbol myristate acetate (PMA) and lipopolysaccharide (LPS) stimulation. Results showed L1 coatings reduced microglia's superoxide production in response to PMA and presented intrinsic antioxidant properties. Meanwhile, L1 decreased iNOS, NO, and pro-inflammatory cytokines (TNF alpha, IL-6, IL-1 beta), while increased anti-inflammatory cytokines (TGF beta 1, IL-10) in LPS stimulated microglia. Furthermore, L1 increased Arg-1 expression and phagocytosis upon LPS stimulation. Rougher NP surface showed lower number of microglia attached per area than their smooth counterpart, lower IL-6 release and superoxide production, and higher intrinsic reducing potential. Finally, we examined the effect of L1 and nanoparticle modifications on microglia response in vivo over 8 weeks with 2-photon imaging. Microglial coverage on the implant surface was found to be lower on the L1 modified substrates relative to unmodified, consistent with the in vitro observation. Our results indicate L1 significantly reduces superoxide production and inflammatory response of microglia and promotes wound healing, while L1 immobilization via a nanoparticle base layer brings added benefit without adverse effects. STATEMENT OF SIGNIFICANCE: Surface modification of microelectrode arrays with L1 has been shown to reduce microglia coverage on neural probe surface in vivo and improves neural recording, but the specific mechanism of action is not fully understood. The results in this study show that surface bound L1 reduces superoxide production from cultured microglia via direct reduction reaction and signaling pathways, increases anti-inflammatory cytokine release and phagocytosis in response to PMA or LPS stimulation. Additionally, roughening the surface with nanoparticles prior to L1 immobilization further increased the benefit of L1 in reducing microglia activation and oxidative stress. Together, our findings shed light on the mechanisms of action of nanotextured and neuroadhesive neural implant coatings and guide future development of seamless tissue interface.


Assuntos
Nanopartículas , Molécula L1 de Adesão de Célula Nervosa , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Molécula L1 de Adesão de Célula Nervosa/farmacologia , Neurônios , Superóxidos
3.
Curr Opin Biotechnol ; 72: 54-61, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710753

RESUMO

Neural implants enable bidirectional communications with nervous tissue and have demonstrated tremendous potential in research and clinical applications. To obtain high fidelity and stable information exchange, we need to minimize the undesired host responses and achieve intimate neuron-device interaction. This paper highlights the key bio-integrative strategies aimed at seamless integration through intelligent device designs to minimize the immune responses, as well as incorporate bioactive elements to actively modulate cellular reactions. These approaches span from surface modification and bioactive agent delivery, to biomorphic and biohybrid designs. Many of these strategies have shown effectiveness in functional outcome measures, others are exploratory but with fascinating potentials. The combination of bio-integrative strategies may synergistically promote the next generation of neural interfaces.


Assuntos
Tecido Nervoso , Neurônios , Próteses e Implantes
4.
Tissue Eng Part A ; 27(17-18): 1128-1139, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33164704

RESUMO

An effective strategy for sustained neurotrophic factor (NTF) delivery to sites of peripheral nerve injury (PNI) would accelerate healing and enhance functional recovery, addressing the major clinical challenges associated with the current standard of care. In this study, scaffold-free cell sheets were generated using human dental pulp stem/progenitor cells, that endogenously express high levels of NTFs, for use as bioactive NTF delivery systems. Additionally, the effect of fibroblast growth factor 2 (FGF2) on NTF expression by dental pulp cell (DPC) sheets was evaluated. In vitro analysis confirmed that DPC sheets express high levels of NTF messenger RNA (mRNA) and proteins, and the addition of FGF2 to DPC sheet culture increased total NTF production by significantly increasing the cellularity of sheets. Furthermore, the DPC sheet secretome stimulated neurite formation and extension in cultured neuronal cells, and these functional effects were further enhanced when DPC sheets were cultured with FGF2. These neuritogenic results were reversed by NTF inhibition substantiating that DPC sheets have a positive effect on neuronal cell activity through the production of NTFs. Further evaluation of DPC sheets in a rat facial nerve crush injury model in vivo established that in comparison with untreated controls, nerves treated with DPC sheets had greater axon regeneration through the injury site and superior functional recovery as quantitatively assessed by compound muscle action potential measurements. This study demonstrates the use of DPC sheets as vehicles for NTF delivery that could augment the current methods for treating PNIs to accelerate regeneration and enhance the functional outcome. Impact statement The major challenges associated with current treatments of peripheral nerve injuries (PNIs) are prolonged repair times and insufficient functional recovery. Dental pulp stem/progenitor cells (DPCs) are known to endogenously express high levels of neurotrophic factors (NTFs), growth factors that enhance axon regeneration. In this study, we demonstrate that scaffold-free DPC sheets can act as effective carrier systems to facilitate the delivery and retention of NTF-producing DPCs to sites of PNIs and improve functional nerve regeneration. DPC sheets have high translational feasibility and could augment the current standard of care to enhance the quality of life for patients dealing with PNIs.


Assuntos
Axônios , Regeneração Nervosa , Animais , Polpa Dentária , Nervo Facial , Humanos , Fatores de Crescimento Neural , Qualidade de Vida , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...